初一上学期数学备课教案优秀5篇
好好文库小编精心整理初一上学期数学备课教案,希望这份初一上学期数学备课教案优秀5篇能够帮助大家,给予大家在写作上的思路。更多初一上学期数学备课教案资料,在搜索框搜索
初一上学期数学备课教案篇1
教学目标
1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;
2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;
3, 体验分类是数学上的常用处理问题的方法。
教学难点 正确理解分类的标准和按照一定的标准进行分类
知识重点 正确理解有理数的概念
教学过程(师生活动) 设计理念
探索新知 在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.出自 WwW.HaoHaowenkU.com
按照书本的说法,得出“整数”“分数”和“有理数”的概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的) 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会
练一练 1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
也可以教师说出一些数,让学生进行判断。
集合的概念不必深入展开。
创新探究 问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
有理数 这个分类可视学生的程度确定是否有必要教学。
应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等
小结与作业
课堂小结 到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
本课作业
1, 必做题:教科书第18页习题1.2第1题
2, 教师自行准备
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。
3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。
初一上学期数学备课教案篇2
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
这个方程不像例l中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程(2)的解。也就是只要将x=1,2,3,4,……代人方程(2)的两边,看哪个数能使两边的值相等,这个数就是这个方程的解。
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=48=16,
因为左边=右边,所以x=3就是这个方程的解。
这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。
问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?
同学们动手试一试,大家发现了什么问题?
同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?
这正是我们本章要解决的问题。
三、巩固练习
1、教科书第3页练习1、2。
2、补充练习:检验下列各括号内的数是不是它前面方程的解。
(1)x-3(x+2)=6+x(x=3,x=-4)
(2)2y(y-1)=3(y=-1,y=2)
(3)5(x-1)(x-2)=0(x=0,x=1,x=2)
四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。
五、作业。教科书第3页,习题6。1第1、3题。
解一元一次方程
1、方程的简单变形
教学目的
通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。
重点、难点
1、重点:方程的两种变形。
2、难点:由具体实例抽象出方程的两种变形。
教学过程
一、引入
上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a形式,本节课,我们将学习如何将方程变形。
二、新授
让我们先做个实验,拿出预先准备好的天平和若干砝码。
测量一些物体的质量时,我们将它放在天干的左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。
如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的砝码,天平仍然平衡。
如果把天平看成一个方程,课本第4页上的图,你能从天平上砝码的变化联想到方程的变形吗?
让同学们观察图6.2.1的左边的天平;天平的左盘内有一个大砝码和2个小砝码,右盘上有5个小砝码,天平平衡,表示左右两盘的质量相等。如果我们用x表示大砝码的质量,1表示小砝码的质量,那么可用方程x+2=5表示天平两盘内物体的质量关系。
初一上学期数学备课教案篇3
学习目标:
1、理解平行线的意义两条直线的两种位置关系;
2、理解并掌握平行公理及其推论的内容;
3、会根据几何语句画图,会用直尺和三角板画平行线;
学习重点:
探索和掌握平行公理及其推论、
学习难点:
对平行线本质属性的理解,用几何语言描述图形的性质
一、学习过程:预习提问
两条直线相交有几个交点?
平面内两条直线的位置关系除相交外,还有哪些呢?
(一)画平行线
1、工具:直尺、三角板
2、方法:一"落";二"靠";三"移";四"画"。
3、请你根据此方法练习画平行线:
已知:直线a,点B,点C、
(1)过点B画直线a的平行线,能画几条?
(2)过点C画直线a的平行线,它与过点B的平行线平行吗?
(二)平行公理及推论
1、思考:上图中,①过点B画直线a的平行线,能画条;
②过点C画直线a的平行线,能画条;
③你画的直线有什么位置关系?。
②探索:如图,P是直线AB外一点,CD与EF相交于P、若CD与AB平行,则EF与AB平行吗?为什么?
二、自我检测:
(一)选择题:
1、下列推理正确的是()
A、因为a//d,b//c,所以c//d B、因为a//c,b//d,所以c//d
C、因为a//b,a//c,所以b//c D、因为a//b,d//c,所以a//c
2、在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为()
A、0个B、1个C、2个D、3个
(二)填空题:
1、在同一平面内,与已知直线L平行的直线有条,而经过L外一点,与已知直线L平行的直线有且只有条。
2、在同一平面内,直线L1与L2满足下列条件,写出其对应的位置关系:
(1)L1与L2没有公共点,则L1与L2;
(2)L1与L2有且只有一个公共点,则L1与L2;
(3)L1与L2有两个公共点,则L1与L2 。
3、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是。
4、平面内有a 、b、c三条直线,则它们的交点个数可能是个。
三、CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2、试说明∠BDG+∠B=180°、
初一上学期数学备课教案篇4
一.知识与技能
能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量.
二.过程与方法
借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性.
三.情感态度与价值观
培养学生积极思考,合作交流的意识和能力.
教学重、难点与关键
1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法.
2.难点:正确理解负数的概念.
3.关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解.
教具准备
投影仪.
教学过程
四、课堂引入
我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的.人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数.
在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.
五、讲授新课
(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+ ,…就是3,2,0.5, ,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.
(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数.
(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数.
(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度.
用正负数表示具有相反意义的量
(5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量.正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额.
(6)、 请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义.
(7)、 你能再举一些用正负数表示数量的实际例子吗?
(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.
六、巩固练习
课本第3页,练习1、2、3、4题.
七、课堂小结
为了表示现实生活中的具有相反意义的量,我们引进了负数.正数就是我们过去学过的数(除0外),在正数前放上“-”号,就是负数,但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数.
八、作业布置
1.课本第5页习题1.1复习巩固第1、2、3题.
九、板书设计
初一上学期数学备课教案篇5
一、教学目标
【知识与技能】
了解数轴的概念,能用数轴上的点准确地表示有理数。
【过程与方法】
通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。
【情感、态度与价值观】
在数与形结合的过程中,体会数学学习的乐趣。
二、教学重难点
【教学重点】
数轴的三要素,用数轴上的点表示有理数。
【教学难点】
数形结合的思想方法。
三、教学过程
(一)引入新课
提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。
(二)探索新知
学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:
提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?
学生活动:画图表示后提问。
提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。
教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。
提问3:你是如何理解数轴三要素的?
师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。
(三)课堂练习
如图,写出数轴上点A,B,C,D,E表示的数。
(四)小结作业
提问:今天有什么收获?
引导学生回顾:数轴的三要素,用数轴表示数。
课后作业:
课后练习题第二题;思考:到原点距离相等的两个点有什么特点?