好好文库范文大全内容页

指数函数数学教案

2024-06-06 03:18:01互联网范文大全

指数函数数学教案优秀5篇

好好文库小编精心整理指数函数数学教案,希望这份指数函数数学教案优秀5篇能够帮助大家,给予大家在写作上的思路。更多指数函数数学教案资料,在搜索框搜索

指数函数数学教案(精选篇1)

教学目标:

1.进一步理解指数函数的性质;

2.能较熟练地运用指数函数的性质解决指数函数的平移问题;

教学重点:

指数函数的性质的应用;

教学难点:

指数函数图象的平移变换.

教学过程:

一、情境创设

1.复习指数函数的概念、图象和性质

练习:函数y=ax(a0且a1)的定义域是_____,值域是______,函数图象所过的定点坐标为 .若a1,则当x0时,y 1;而当x0时,y 1.若00时,y 1;而当x0时,y 1.

2.情境问题:指数函数的性质除了比较大小,还有什么作用呢?我们知道对任意的a0且a1,函数y=ax的图象恒过(0,1),那么对任意的a0且a1,函数y=a2x1的图象恒过哪一个定点呢?

二、数学应用与建构

例1 解不等式:

(1) ; (2) ;

(3) ; (4) .

小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围.

例2 说明下列函数的图象与指数函数y=2x的图象的关系,并画出它们的示意图:

(1) ; (2) ; (3) ; (4) .

小结:指数函数的平移规律:y=f(x)左右平移 y=f(x+k)(当k0时,向左平移,反之向右平移),上下平移 y=f(x)+h(当h0时,向上平移,反之向下平移).

练习:

(1)将函数f (x)=3x的图象向右平移3个单位,再向下平移2个单位,可以得到函数 的图象.

(2)将函数f (x)=3x的图象向右平移2个单位,再向上平移3个单位,可以得到函数 的图象.

(3)将函数 图象先向左平移2个单位,再向下平移1个单位所得函数的解析式是 .好好文库 wWw.HaoHaowenkU.COM

(4)对任意的a0且a1,函数y=a2x1的图象恒过的定点的坐标是 .函数y=a2x-1的图象恒过的定点的坐标是 .

小结:指数函数的定点往往是解决问题的突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口.

(5)如何利用函数f(x)=2x的图象,作出函数y=2x和y=2|x2|的图象?

(6)如何利用函数f(x)=2x的图象,作出函数y=|2x-1|的图象?

小结:函数图象的对称变换规律.

例3 已知函数y=f(x)是定义在R上的奇函数,且x0时,f(x)=1-2x,试画出此函数的图象.

例4 求函数 的最小值以及取得最小值时的x值.

小结:复合函数常常需要换元来求解其最值.

练习:

(1)函数y=ax在[0,1]上的最大值与最小值的'和为3,则a等于 ;

(2)函数y=2x的值域为 ;

(3)设a0且a1,如果y=a2x+2ax-1在[-1,1]上的最大值为14,求a的值;

(4)当x0时,函数f(x)=(a2-1)x的值总大于1,求实数a的取值范围.

三、小结

1.指数函数的性质及应用;

2.指数型函数的定点问题;

3.指数型函数的草图及其变换规律.

四、作业:

课本P55-6,7.

五、课后探究

(1)函数f(x)的定义域为(0,1),则函数 的定义域为 .

(2)对于任意的x1,x2R ,若函数f(x)=2x ,试比较 的大小.

指数函数数学教案(精选篇2)

教学目标:

1.进一步理解指数函数的性质;

2.能较熟练地运用指数函数的性质解决指数函数的平移问题;

教学重点:

指数函数的性质的应用;

教学难点:

指数函数图象的平移变换.

教学过程:

一、情境创设

1.复习指数函数的概念、图象和性质

练习:函数y=ax(a0且a1)的定义域是_____,值域是______,函数图象所过的定点坐标为 .若a1,则当x0时,y 1;而当x0时,y 1.若00时,y 1;而当x0时,y 1.

2.情境问题:指数函数的性质除了比较大小,还有什么作用呢?我们知道对任意的a0且a1,函数y=ax的图象恒过(0,1),那么对任意的a0且a1,函数y=a2x1的图象恒过哪一个定点呢?

二、数学应用与建构

例1 解不等式:

(1) ; (2) ;

(3) ; (4) .

小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围.

例2 说明下列函数的图象与指数函数y=2x的图象的关系,并画出它们的示意图:

(1) ; (2) ; (3) ; (4) .

小结:指数函数的平移规律:y=f(x)左右平移 y=f(x+k)(当k0时,向左平移,反之向右平移),上下平移 y=f(x)+h(当h0时,向上平移,反之向下平移).

练习:

(1)将函数f (x)=3x的图象向右平移3个单位,再向下平移2个单位,可以得到函数 的图象.

(2)将函数f (x)=3x的图象向右平移2个单位,再向上平移3个单位,可以得到函数 的图象.

(3)将函数 图象先向左平移2个单位,再向下平移1个单位所得函数的解析式是 .

(4)对任意的a0且a1,函数y=a2x1的图象恒过的定点的坐标是 .函数y=a2x-1的图象恒过的定点的坐标是 .

小结:指数函数的定点往往是解决问题的突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口.

(5)如何利用函数f(x)=2x的图象,作出函数y=2x和y=2|x2|的图象?

(6)如何利用函数f(x)=2x的图象,作出函数y=|2x-1|的图象?

小结:函数图象的对称变换规律.

例3 已知函数y=f(x)是定义在R上的奇函数,且x0时,f(x)=1-2x,试画出此函数的图象.

例4 求函数 的最小值以及取得最小值时的x值.

小结:复合函数常常需要换元来求解其最值.

练习:

(1)函数y=ax在[0,1]上的最大值与最小值的和为3,则a等于 ;

(2)函数y=2x的值域为 ;

(3)设a0且a1,如果y=a2x+2ax-1在[-1,1]上的最大值为14,求a的值;

(4)当x0时,函数f(x)=(a2-1)x的值总大于1,求实数a的取值范围.

三、小结

1.指数函数的性质及应用;

2.指数型函数的定点问题;

3.指数型函数的草图及其变换规律.

四、作业:

课本P55-6,7.

五、课后探究

(1)函数f(x)的定义域为(0,1),则函数 的定义域为 .

(2)对于任意的x1,x2R ,若函数f(x)=2x ,试比较 的大小.

指数函数数学教案(精选篇3)

一、教学目标:

知识与技能:理解指数函数的概念,能够判断指数函数。

过程与方法:通过观察,分析、归纳、总结、自主建构指数函数的概念。领会从特殊到一般的数学思想方法,从而培养学生发现、分析、解决问题的能力。

情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

二、教学重点、难点:

教学重点:指数函数的概念,判断指数函数。教学难点:对底数的分类。

三、学情分析:

学生已经学习了函数的知识,,指数函数是函数知识中重要的一部分内容,学生若能将其与学过的正比例函数、一次函数、二次函数进行对比着去理解指数函数的概念、性质、图象,则一定能从中发现指数函数的本质,所以对已经熟悉掌握函数的学生来说,学习本课并不是太难。学生通过对高中数学中函数的学习,对解决一些数学问题有一定的能力。通过教师启发式引导,学生自主探究完成本节课的学习。高一学生的认知水平从形象向抽象、从特殊向一般过渡,思维能力的提高是一个转折期,但是,学生的自主意识强,有主动学习的愿望与能力。有好奇心、好胜心、进取心,富有激情、思维活跃。

四、教学内容分析

本节课是《普通高中课程标准实验教科书·数学(1)》(人教B版)第二章第一节第二课()《指数函数及其性质》。根据我所任教的学生的实际情况,我将《指数函数及其性质》划分为三节课(探究指数函数的概念,图象及其性质,指数函数及其性质的应用),这是第一节课“探究指数函数的概念”。指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。函数及其图象在高中数学中占有很重要的位置。如何突破这个即重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的`结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的。本节课,主要是让学生学会如何去发现研究心的函数,为后面学习对数函数、幂函数做出铺垫。

五、教学过程:

(一)创设情景

问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂x次后,得到的细胞分裂的个数y与x之间,构成一个函数关系,能写出x与y之间的函数关系式吗?

问题2:《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭。”请你写出截取x次后,木棰剩余量y关于x的函数关系式?

(二)导入新课

引导学生观察,两个函数中,有什么共同特征?

(三)新课讲授指数函数的定义

(四)巩固与练习例题:

(五)课堂小结

(六)布置作业

指数函数数学教案(精选篇4)

一、教学目标:

1、知识与技能:

(1) 结合实例,了解正整数指数函数的概念.

(2)能够求出正整数指数函数的解析式,进一步研究其性质.

2、 过程与方法:

(1)让学生借助实例,了解正整数指数函数,体会从具体到一般,从个别到整体的研究过程和研究方法.

(2)从图像上观察体会正整数指数函数的性质,为这一章的学习作好铺垫.

3、情感.态度与价值观:使学生通过学习正整数指数函数体会学习指数函数的重要意义,增强学习研究函数的积极性和自信心.

二、教学重点: 正整数指数函数的定义.教学难点:正整数指数函数的解析式的确定.

三、学法指导:学生观察、思考、探究.教学方法:探究交流,讲练结合。

四、教学过程

(一)新课导入

[互动过程1]:

(1)请你用列表表示1个细胞分裂次数分别

为1,2,3,4,5,6,7,8时,得到的细胞个数;

(2)请你用图像表示1个细胞分裂的次数n( )与得到的细

胞个数y之间的关系;

(3)请你写出得到的细胞个数y与分裂次数n之间的关系式,试用

科学计算器计算细胞分裂15次、20次得到的细胞个数.

解:

(1)利用正整数指数幂的运算法则,可以算出1个细胞分裂1,2,3,

4,5,6,7,8次后,得到的细胞个数

分裂次数 1 2 3 4 5 6 7 8

细胞个数 2 4 8 16 32 64 128 256

(2)1个细胞分裂的次数 与得到的细胞个数 之间的关系可以用图像表示,它的图像是由一些孤立的点组成

(3)细胞个数 与分裂次数 之间的关系式为 ,用科学计算器算得 ,

所以细胞分裂15次、20次得到的细胞个数分别为32768和1048576.

探究:从本题中得到的函数来看,自变量和函数值分别是什么?此函数是什么类型的函数? 细胞个数 随着分裂次数 发生怎样变化?你从哪里看出?

小结:从本题中可以看出我们得到的.细胞分裂个数都是底数为2的指数,而且指数是变量,取值为正整数. 细胞个数 与分裂次数 之间的关系式为 .细胞个数 随着分裂次数 的增多而逐渐增多.

[互动过程2]:问题2.电冰箱使用的氟化物的释放破坏了大气上层的臭氧层,臭氧含量Q近似满足关系式Q=Q00.9975 t,其中Q0是臭氧的初始量,t是时间(年),这里设Q0=1.

(1)计算经过20,40,60,80,100年,臭氧含量Q;

(2)用图像表示每隔20年臭氧含量Q的变化;

(3)试分析随着时间的增加,臭氧含量Q是增加还是减少.

解:(1)使用科学计算器可算得,经过20,40,60,80,100年,臭氧含量Q的值分别为0.997520=0.9512, 0.997540=0.9047, 0.997560=0.8605, 0.997580=0.8185, 0.9975100=0.7786;

(2)用图像表示每隔20年臭氧含量Q的变化如图所

示,它的图像是由一些孤立的点组成.

(3)通过计算和观察图形可以知道, 随着时间的增加,

臭氧含量Q在逐渐减少.

探究:从本题中得到的函数来看,自变量和函数值分别

又是什么?此函数是什么类型的函数?,臭氧含量Q随着

时间的增加发生怎样变化?你从哪里看出?

小结:从本题中可以看出我们得到的臭氧含量Q都是底数为0.9975的指数,而且指数是变量,取值为正整数. 臭氧含量Q近似满足关系式Q=0.9975 t, 随着时间的增加,臭氧含量Q在逐渐减少.

[互动过程3]:上面两个问题所得的函数有没有共同点?你能统一吗?自变量的取值范围又是什么?这样的函数图像又是什么样的?为什么?

正整数指数函数的定义:一般地,函数 叫作正整数指数函数,其中 是自变量,定义域是正整数集 .

说明: 1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数.

(二)、例题:某地现有森林面积为1000 ,每年增长5%,经过 年,森林面积为 .写出 , 间的函数关系式,并求出经过5年,森林的面积.

分析:要得到 , 间的函数关系式,可以先一年一年的增长变化,找出规律,再写出 , 间的函数关系式.

解: 根据题意,经过一年, 森林面积为1000(1+5%) ;经过两年, 森林面积为1000(1+5%)2 ;经过三年, 森林面积为1000(1+5%)3 ;所以 与 之间的函数关系式为 ,经过5年,森林的面积为1000(1+5%)5=1276.28(hm2).

练习:课本练习1,2

补充例题:高一某学生家长去年年底到银行存入20__元,银行月利率为2.38%,那么如果他第n个月后从银行全部取回,他应取回钱数为y,请写出n与y之间的关系,一年后他全部取回,他能取回多少?

解:一个月后他应取回的钱数为y=20__(1+2.38%),二个月后他应取回的钱数为y=20__(1+2.38%)2;,三个月后他应取回的钱数为y=20__(1+2.38%)3,, n个月后他应取回的钱数为y=20__(1+2.38%)n; 所以n与y之间的关系为y=20__(1+2.38%)n (nN+),一年后他全部取回,他能取回的钱数为y=20__(1+2.38%)12.

补充练习:某工厂年产值逐年按8%的速度递增,今年的年产值为200万元,那么第n年后该厂的年产值为多少?

(三)、小结:1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数.

(四)、作业:课本习题3-1 1,2,3

指数函数数学教案(精选篇5)

教学目标:

进一步理解指数函数及其性质,能运用指数函数模型,解决实际问题。

教学重点:

用指数函数模型解决实际问题。

教学难点:

指数函数模型的建构。

教学过程:

一、情境创设

1.某工厂今年的年产值为a万元,为了增加产值,今年增加了新产品的研发,预计从明年起,年产值每年递增15%,则明年的产值为 万元,后年的产值为 万元.若设x年后实现产值翻两番,则得方程 。

二、数学建构

指数函数是常见的数学模型,也是重要的数学模型,常见于工农业生产,环境治理以及投资理财等

递增的常见模型为=(1+p%)x(p>0);递减的常见模型则为=(1-p%)x(p>0)。

三、数学应用

例1 某种放射性物质不断变化为其他,每经过一年,这种物质剩留的质量是原来的84%,写出这种物质的剩留量关于时间的函数关系式。

例2 某医药研究所开发一种新药,据检测:如果成人按规定的剂量服用,服药后每毫升血液中的含药量为(微克),与服药后的时间t(小时)之间近似满足如图曲线,其中OA是线段,曲线ABC是函数=at的图象。试根据图象,求出函数= f(t)的解析式。

例3 某位公民按定期三年,年利率为2.70%的方式把5000元存入银行.问三年后这位公民所得利息是多少元?

例4 某种储蓄按复利计算利息,若本金为a元,每期利率为r,设存期是x,本利和(本金加上利息)为元。

(1)写出本利和随存期x变化的函数关系式;

(2)如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和。

(复利是把前一期的利息和本金加在一起作本金,再计算下一期利息的一种计算利息方法)

小结:银行存款往往采用单利计算方式,而分期付款、按揭则采用复利计算.这是因为在存款上,为了减少储户的重复操作给银行带来的工作压力,同时也是为了提高储户的长期存款的积极性,往往定期现年的利息比再次存取定期一年的收益要高;而在分期付款的过程中,由于每次存入的现金存期不一样,故需要采用复利计算方式.比如“本金为a元,每期还b元,每期利率为r”,第一期还款时本息和应为a(1+p%),还款后余额为a(1+p%)-b,第二次还款时本息为(a(1+p%)-b)(1+p%),再还款后余额为(a(1+p%)-b)(1+p%)-b=a(1+p%)2-b(1+p%)-b,……,第n次还款后余额为a(1+p%)n-b(1+p%)n1-b(1+p%)n2-……-b.这就是复利计算方式。

例5 2000~2002年,我国国内生产总值年平均增长7.8%左右.按照这个增长速度,画出从2000年开始我国年国内生产总值随时间变化的图象,并通过图象观察到2010年我国年国内生产总值约为2000年的多少倍(结果取整数)。

练习:

1.(1)一电子元件去年生产某种规格的电子元件a个,计划从今年开始的年内,每年生产此种规格电子元件的产量比上一年增长p%,试写出此种规格电子元件的年产量随年数变化的函数关系式;

(2)一电子元件去年生产某种规格的电子元件的成本是a元/个,计划从今年开始的年内,每年生产此种规格电子元件的产量比上一年下降p%,试写出此种规格电子元件的单件成本随年数变化的函数关系式。

2.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经3小时后,这种细菌可由1个分裂成个 。

3.我国工农业总产值计划从2000年到2024年翻两番,设平均每年增长率为x,则得方程 .

四、小结:

1.指数函数模型的建立;

2.单利与复利;

3.用图象近似求解。

五、作业:

课本P71-10,16题。

猜你喜欢