八年级数学函数教案优秀5篇
好好文库小编精心整理八年级数学函数教案,希望这份八年级数学函数教案优秀5篇能够帮助大家,给予大家在写作上的思路。更多八年级数学函数教案资料,在搜索框搜索
八年级数学函数教案【篇1】
一、创设情境
1.一次函数的图象是什么,如何简便地画出一次函数的图象?
(一次函数y=kx+b(k≠0)的图象是一条直线,画一次函数图象时,取两点即可画出函数的图象).
2.正比例函数y=kx(k≠0)的图象是经过哪一点的直线?
(正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线).
3.平面直角坐标系中,x轴、y轴上的点的坐标有什么特征?
4.在平面直角坐标系中,画出函数的图象.我们画一次函数时,所选取的两个点有什么特征,通过观察图象,你发现这两个点在坐标系的什么地方?
二、探究归纳
1.在画函数的图象时,通过列表,可知我们选取的点是(0,-1)和(2,0),这两点都在坐标轴上,其中点(0,-1)在y轴上,点(2,0)在x轴上,我们把这两个点依次叫做直线与y轴与x轴的交点.
2.求直线y=-2x-3与x轴和y轴的交点,并画出这条直线.
分析x轴上点的纵坐标是0,y轴上点的横坐标0.由此可求x轴上点的横坐标值和y轴上点的纵坐标值.
解因为x轴上点的纵坐标是0,y轴上点的横坐标0,所以当y=0时,x=-1.5,点(-1.5,0)就是直线与x轴的交点;当x=0时,y=-3,点(0,-3)就是直线与y轴的交点.
过点(-1.5,0)和(0,-3)所作的直线就是直线y=-2x-3.
所以一次函数y=kx+b,当x=0时,y=b;当y=0时,.所以直线y=kx+b与y轴的交点坐标是(0,b),与x轴的交点坐标是.
三、实践应用
例1若直线y=-kx+b与直线y=-x平行,且与y轴交点的纵坐标为-2;求直线的表达式.
分析直线y=-kx+b与直线y=-x平行,可求出k的值,与y轴交点的纵坐标为-2,可求出b的值.
解因为直线y=-kx+b与直线y=-x平行,所以k=-1,又因为直线与y轴交点的纵坐标为-2,所以b=-2,因此所求的直线的表达式为y=-x-2.
例2求函数与x轴、y轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.
分析求直线与x轴、y轴的交点坐标,根据x轴、y轴上点的纵坐标和横坐标分别为0,可求出相应的横坐标和纵坐标?
八年级数学函数教案【篇2】
知识要点
1、函数的概念:一般地,在某个变化过程中,有两个 变量x和 y,如果给定一个x值,
相应地就确定了一个y值,那么称y是x的函数,其中x是自变量,y是因变量。
2、一次函数的概念:若两个变量x,y间的关系式可以表示成y=kx+b(k0,b为常数)的形式,则称y是x的一次函数, x为自变量,y为因变量。特别地,当b=0 时,称y 是x的正比例函数。正比例函数是一次函数的特殊形式,因此正比例函数都是一次函数,而 一次函 数不一定都是正比例函数.
3、正比例函数y=kx的性质
(1)、正比例函数y=kx的图象都经过
原点(0,0),(1,k)两点的一条直线;
(2)、当k0时,图象都经过一、三象限;
当k0时,图象都经过二、四象限
(3)、当k0时,y随x的增大而增大;
当k0时,y随x的增大而减小。
4、一次函数y=kx+b的性质
(1)、经过特殊点:与x轴的交点坐标是 ,
与y轴的交点坐标是 .
(2)、当k0时,y随x的增大而增大
当k0时,y随x的增大而减小
(3)、k值相同,图象是互相平行
(4)、b值相同,图象相交于同一点(0,b)
(5)、影响图象的两个因素是k和b
①k的正负决定直线的方向
②b的正负决定y轴交点在原点上方或下方
5.五种类型一次函数解析式的确定
确定一次函数的解析式,是一次函数学习的重要内容。
(1)、根据直线的解析式和图像上一个点的坐标,确定函数的解析式
例1、若函数y=3x+b经过点(2,-6),求函数的解析式。
解:把点(2,-6)代入y=3x+b,得
-6=32+b 解得:b=-12
函数的解析式为:y=3x-12
(2)、根据直线经过两个点的坐标,确定函数的解析式
例2、直线y=kx+b的图像经过A(3,4)和点B(2,7),
求函数的表达式。
解:把点A(3,4)、点B(2,7)代入y=kx+b,得
,解得:
函数的解析式为:y=-3x+13
(3)、根据函数的图像,确定函数的解析式
例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x
(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x
(小时)之间的函数关系式,并且确定自变量x的取值范围。
(4)、根据平移规律,确定函数的解析式
例4、如图2,将直线 向上平移1个单位,得到一个一次
函数的图像,那么这个一次函数的解析式是 .
解:直线 经过点(0,0)、点(2,4),直线 向上平移1个单位
后,这两点变为(0,1)、(2,5),设这个一次函数的解析式为 y=kx+b,
得 ,解得: ,函数的解析式为:y=2x+1
(5)、根据直线的对称性,确定函数的解析式
例5、已知直线y=kx+b与直线y=-3x+6关于y轴对称,求k、b的值。
例6、已知直线y=kx+b与直线y=-3x+6关于x轴对称,求k、b的值。
例7、已知直线y=kx+b与直线y=-3x+6关于原点对称,求k、b的值。
经典训练:
训练1:
1、已知梯形上底的长为x,下底的长是10,高是 6,梯形的面积y随上底x的变化而变化。
(1)梯形的面积y与上底的长x之间的关系是否是函数关系?为什么?
(2)若y是x的函数,试写出y与x之间的函数关系式 。
训练2:
1.函数:①y=- x x;②y= -1;③y= ;④y=x2+3x-1;⑤y=x+4;⑥y=3. 6x,
一次函数有___ __;正比例函数有____________(填序号).
2.函数y=(k2-1)x+3是一次函数,则k的取值范围是( )
A.k1 B.k-1 C.k1 D.k为任意实数.
3.若一次函数y=(1+2k)x+2k-1是正比 例函数,则k=_______.
训练3:
1 . 正比例函数y=k x,若y随x的增大而减 小,则k______.
2. 一次函数y=mx+n的图象如图,则下面正确的是( )
A.m0 B.m0 C.m0 D.m0
3.一次函数y=-2x+ 4的图象经过的象限是____,它与x轴的交 点坐标是____,与y轴的交点坐标是____.
4.已知一次函 数y =(k-2)x+(k+2),若它的图象经过原点,则k=_____;
若y随x的增大而增大,则k__________.
5.若一次函数y=kx-b满足kb0,且函数值随x的减小而增大,则它的大致图象是图中的( )
训练4:
1、 正比例函数的图象经过点A(-3,5),写出这正比例函数的解析式.
2、已知一次函数的图象经过点(2,1)和(-1,-3).求此一次函数的解析式 .
3、一次函数y=kx+b的图象如上图所示,求此一次函数的解析式。
4、已知一次函数y=kx+b,在x=0时的值为4,在x=-1时的值为-2,求这个一次函数的解析式。
5、已知y-1与x成正比例,且 x=-2时,y=-4.
(1)求出y与x之间的函数关系式;
(2)当x=3时,求y的值.
一、填空题(每题2分,共26分)
1、已知 是整数,且一次函数 的图象不过第二象限,则 为 .
2、若直线 和直线 的交点坐标为 ,则 .
3、一次函数 和 的图象与 轴分别相交于 点和 点, 、 关于 轴对称,则 .
4、已知 , 与 成正比例, 与 成反比例,当 时 , 时, ,则当 时, .
5、函数 ,如果 ,那么 的取值范围是 .
6、一个长 ,宽 的矩形场地要扩建成一个正方形场地,设长增加 ,宽增加 ,则 与 的函数关系是 .自变量的取值范围是 .且 是 的 函数.
7、如图 是函数 的一部分图像,(1)自变量 的取值范围是 ;(2)当 取 时, 的最小值为 ;(3)在(1)中 的取值范围内, 随 的增大而 .
8、已知一次函数 和 的图象交点的横坐标为 ,则 ,一次函数 的图象与两坐标轴所围成的三角形的面积为 ,则 .
9、已知一次函数 的图象经过点 ,且它与 轴的交点和直线 与 轴的交点关于 轴对称,那么这个一次函数的解析式为 .
10、一次函数 的图象过点 和 两点,且 ,则 , 的取值范围是 .
11、一次函数 的图象如图 ,则 与 的大小关系是 ,当 时, 是正比例函数.
12、 为 时,直线 与直线 的交点在 轴上.
13、已知直线 与直线 的交点在第三象限内,则 的取值范围是 .
二、选择题(每题3分,共36分)
14、图3中,表示一次函数 与正比例函数 、 是常数,且 的图象的是( )
15、若直线 与 的交点在 轴上,那么 等于( )
A.4 B.-4 C. D.
16、直线 经过一、二、四象限,则直线 的图象只能是图4中的( )
17、直线 如图5,则下列条件正确的是( )
18、直线 经过点 , ,则必有( )
A.
19、如果 , ,则直线 不通过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
20、已知关于 的一次函数 在 上的函数值总是正数,则 的取值范围是
A. B. C. D.都不对
21、如图6,两直线 和 在同一坐标系内图象的位置可能是( )
图6
22、已知一次函数 与 的图像都经过 ,且与 轴分别交于点B, ,则 的面积为( )
A.4 B.5 C.6 D.7
23、已知直线 与 轴的交点在 轴的正半轴,下列结论:① ;② ;③ ;④ ,其中正确的个数是( )
A.1个 B.2个 C.3个 D.4个
24、已知 ,那么 的图象一定不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
25、如图7,A、B两站相距42千米,甲骑自行车匀速行驶,由A站经P处去B站,上午8时,甲位于距A站18千米处的P处,若再向前行驶15分钟,使可到达距A站22千米处.设甲从P处出发 小时,距A站 千米,则 与 之间的关系可用图象表示为( )
三、解答题(1~6题每题8分,7题10分,共58分)
26、如图8,在直角坐标系内,一次函数 的图象分别与 轴、 轴和直线 相交于 、 、 三点,直线 与 轴交于点D,四边形OBCD(O是坐标原点)的面积是10,若点A的横坐标是 ,求这个一次函数解析式.
27、一次函数 ,当 时,函数图象有何特征?请通过不同的取值得出结论?
28、某油库有一大型储油罐,在开始的8分钟内,只开进油管,不开出油管,油罐的油进至24吨(原油罐没储油)后将进油管和出油管同时打开16分钟,油罐内的油从24吨增至40吨,随后又关闭进油管,只开出油管,直到将油罐内的油放完,假设在单位时间内进油管与出油管的流量分别保持不变.
(1)试分别写出这一段时间内油的储油量Q(吨)与进出油的时间t(分)的函数关系式.
(2)在同一坐标系中,画出这三个函数的图象.
29、某市电力公司为了鼓励居民用电,采用分段计费的方法计算电费:每月不超过100度时,按每度0.57元计费;每月用电超过100度时,其中的100度按原标准收费;超过部分按每度0.50元计费.
(1)设用电 度时,应交电费 元,当 100和 100时,分别写出 关于 的函数关系式.
(2)小王家第一季度交纳电费情况如下:
月份 一月份 二月份 三月份 合计
交费金额 76元 63元 45元6角 184元6角
问小王家第一季度共用电多少度?
30、某地上年度电价为0.8元,年用电量为1亿度.本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至 元,则本年度新增用电量 (亿度)与( 0.4)(元)成反比例,又当 =0.65时, =0.8.
(1)求 与 之间的函数关系式;
(2)若每度电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量(实际电价-成本价)]
31、汽车从A站经B站后匀速开往C站,已知离开B站9分时,汽车离A站10千米,又行驶一刻钟,离A站20千米.(1)写出汽车与B站距离 与B站开出时间 的关系;(2)如果汽车再行驶30分,离A站多少千米?
32、甲乙两个仓库要向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨水泥,B地需110吨水泥,两库到A,B两地的路程和运费如下表(表中运费栏元/(吨、千米)表示每吨水泥运送1千米所需人民币)
路程/千米 运费(元/吨、千米)
甲库 乙库 甲库 乙库
A地 20 15 12 12
B地 25 20 10 8
(1)设甲库运往A地水泥 吨,求总运费 (元)关于 (吨)的函数关系式,画出它的图象(草图).
(2)当甲、乙两库各运往A、B两地多少吨水泥时,总运费最省?最省的总运费是多少?
八年级数学函数教案【篇3】
一、创设情境
问题画出函数y=的图象,根据图象,指出:
(1)x取什么值时,函数值y等于零?
(2)x取什么值时,函数值y始终大于零?
二、探究归纳
问一元一次方程=0的解与函数y=的图象有什么关系?
答一元一次方程=0的解就是函数y=的图象上当y=0时的x的值.
问一元一次方程=0的解,不等式>0的解集与函数y=的图象有什么关系?
答不等式>0的解集就是直线y=在x轴上方部分的x的取值范围.
三、实践应用
例1画出函数y=-x-2的'图象,根据图象,指出:
(1)x取什么值时,函数值y等于零?
(2)x取什么值时,函数值y始终大于零?
解过(-2,0),(0,-2)作直线,如图.
(1)当x=-2时,y=0;
(2)当x<-2时,y>0.
例2利用图象解不等式(1)2x-5>-x+1,(2)2x-5<-x+1.
解设y1=2x-5,y2=-x+1,
在直角坐标系中画出这两条直线,如下图所示.
两条直线的交点坐标是(2,-1),由图可知:
(1)2x-5>-x+1的解集是y1>y2时x的取值范围,为x>-2;
(2)2x-5<-x+1的解集是y1<y2时x的取值范围,为x<-2.
四、交流反思
运用函数的图象来解释一元一次方程、一元一次不等式的解集,并能通过函数图象来回答一元一次方程、一元一次不等式的解集.
五、检测反馈
1.已知函数y=4x-3.当x取何值时,函数的图象在第四象限?
2.画出函数y=3x-6的图象,根据图象,指出:
(1)x取什么值时,函数值y等于零?
(2)x取什么值时,函数值y大于零?
(3)x取什么值时,函数值y小于零?
3.画出函数y=-0.5x-1的图象,根据图象?
八年级数学函数教案【篇4】
学习目标:
1、了解平行线性质定理和判定定理在条件和结论上的区别,体会互逆的思维过程;
2、能熟练应用平行线的性质公理及定理。
一、试一试
自学指导:平行线性质公理:两直线平行,同位角相等
1、 思考下列各题,你能利用平行线性质公理解决它们吗?
2、 充分思考后自学教材P229-231,学完后合上课本完成下列各题,注意逻辑和书写。
(1)已知,如图,直线a∥b,∠1和∠2是直线a,b被直线c截出的内错角。请根据平行线性质公理证明∠1=∠2
由此得平行线性质定理1:
(2) 已知,如图,直线a∥b,∠1和∠2是直线a,b被直线c截出的同旁内角。请根据平行线性质公理或上题已证的定理证明∠1+∠2=180°
由此得平行线性质定理2:
二、练一练
1、已知:如图,直线a,b,c被直线d所截,且a∥b,c∥b
(1)求证:a∥c
(2)请将(1)题证得的结论用一句话总结出来
2、利用“两直线平行,同旁内角互补”证明“平行四边形对角线相等”。
四、记一记
1、两直线平行的性质公理及两个性质定理;
2、平行线的性质补充结论
(1)垂直于两平行线之一的直线必垂直于另一条直线
(2)夹在两平行线之间的平行线段相等;
(3)两条平行线间的距离处处相等;
(4)经过直线外一点,有且只有一条直线和已知直线平行;
(5)如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或者互补
B组:请在补充结论中选择你感兴趣的进行证明:
八年级数学函数教案【篇5】
课型:
复习课
学习目标(学习重点):
1. 针对函数及其图象一章,查漏补缺,答疑解惑;
2. 一次函数应用的复习.
补充例题:
例1.如图,lA lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系
(1)B出发时与A相距 千米;
(2)走了一段路后,自行车发生故障,进行修理,所用的时间是 小时;
(3)B出发后 小时与A相遇;
(4)求出A行走的路程S与时间t的函数关系式;
(5)若B的自行车不发生故障,保持出发时的速度前进, 小时与A相遇,相遇点离B的出发点 千米,在图中表示出这个相遇点C.
例2.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如,图中过点P分别作x轴, y的垂线,与坐标轴围成矩形OAPB的周长与面积相等,则点P是和谐点.
(1)判断点M(1,2),N(4,4)是否为和谐点,并说明理由;
(2)若和谐点P(a,3)在直线y=-x+b(b为常数)上,求点a, b的值.
例3.在平面直角坐标系中,一动点P(x,y)从M(1,0)出发,沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四点组成的正方形边线(如图①)按一定方向运动.图②是P点运动的路程s(个单位)与运动时间 (秒)之间的函数图象,图③是P点的纵坐标y与P点运动的路程s之间的函数图象的一部分.
(1)求s与t之间的函数关系式.
(2)与图③相对应的P点的运动路径是: ;P点出发 秒首次到达点B;
(3)写出当38时,y与s之间的函数关系式,并在图③中补全函数图象.
课后续助:
1.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.
(1)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式
①用水量小于等于3000吨 ;②用水量大于3000吨 .
(2)某月该单位用水3200吨,水费是 元;若用水2800吨,水费 元.
(3)若某月该单位缴纳水费1540元,则该单位用水多少吨?
2.某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.
(1)有月租费的收费方式是 (填①或②),月租费是 元;
(2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;
(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.
3.某气象研究中心观测一场沙尘暴从发生到结束全过程, 开始时风暴平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时,一段时间,风暴保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减小1千米/时,最终停止。 结合风速与时间的图像,回答下列问题:
(1)在y轴( )内填入相应的数值;
(2)沙尘暴从发生到结束,共经过多少小时?
(3)求出当x25时,风速y(千米/时)与时间x(小时)之间的函数关系式.
(4)若风速达到或超过20千米/时,称为强沙尘暴,则强沙尘暴持续多长时间?