好好文库范文大全内容页

人教版五年级数学上册教案

2024-06-03 04:51:01互联网范文大全

人教版五年级数学上册教案通用5篇

教师需要在教学前明确教学目标,让学生了解学习的重点和难点,从而更好地掌握知识。下面是小编为大家整理的人教版五年级数学上册教案,如果大家喜欢可以分享给身边的朋友。

人教版五年级数学上册教案【篇1】

设计说明

本课时的教学是在学生已有的知识经验基础上进行的,学习起来并不难,教学时应注意突出以下两点:

1、把新知融入到有趣的情境中,激发学生的学习兴趣。

在课堂教学中创设情境,把问题隐藏在情境中,制造悬念,激发学生的探究欲望和学习兴趣。本设计由学生喜欢的孙悟空导入,有效地激发了学生的学习热情。在设计练习时,将“做一做”的题目融入到游戏之中,既激发了学生的学习兴趣,又达到了巩固强化的目的。

2、以人为本,彰显学生的主体地位,让学生积极主动地参与知识的建构,提升学生的数学素养。

在学习的过程中让学生学会自主探究,即学生能学会的,老师决不代替。本设计把学生放在了学习的主体地位,让学生主动探究出最简分数的意义。学习约分时,放手让学生思考怎样把不是最简分数的分数化成最简分数,让学生说出不同的思路和方法,体现了解决问题策略的多样化。

设计意图:

在自学的过程中,学生及时反馈,教师予以指导,特别在学习约分的两种方法时,让学生在头脑中感受每一步的过程,形成知识表象。

课前准备

教师准备PPT课件长方形纸

教学过程

(1)复习巩固,情境导入,激发兴趣

1、求下面每组数的公因数。

42和50 15和5 8和21 18和12

2、大家都看过《西游记》,里面都有哪些人物?谁最厉害?大家都知道孙悟空有72变,特别神奇,你们想不想也学一招?好,这节课我们就来“变分数”。wWw.HaoHaowenkU.CoM

(2)认识约分

1、尝试“变分数”。

课件出示教材65页例4:把化成分子和分母比较小且分数大小不变的分数。

让学生了解“变化”的要求:

①这个分数要与的大小相等。

②这个分数的分子、分母要比的分子、分母小。

2、了解约分的概念。

①所变出的分数与原分数有什么关系?

②像这样,把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

③请学生说一说所变的分数是怎样得来的。

观察后发现分数的大小不变,但分子、分母都比原来分数的分子、分母小。

3、认识最简分数。

①约分后的分子、分母能否再变小了?为什么?

②小结:像这样,分子和分母只有公因数1的分数,叫做最简分数。

4、说出几个最简分数,强化最简分数的概念。

(3)合作交流,总结方法

1、讨论:你能根据我们化简的过程找到约分的方法吗?

2、小结。

教师板书约分时一般采用的两种方法:

①逐步约分法。

如约分时,依次用12,18的公因数2和3去除,最后约分成。

②一次约分法。

如约分时,如果能很快看出12和18的最大公因数,也可以直接用最大公因数6去除,一次约分成。

3、小结:我们既可以用分子、分母的公因数去除,一步一步地来约分;也可以用最大公因数去除,直接一次约分。

人教版五年级数学上册教案【篇2】

教学目标

1、让学生通过找次品的操作活动和分析、归纳的理性思考,发现解决这类问题的最佳策略-把待测物品平均分3组。

2、以“找次品”活动为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。

3、让学生体会用缩小范围逐步逼近的方法来解决问题的数学思想,培养学生思考问题的严密性和口头语言表达的逻辑性。

学情分析

解决问题的策略研究学生已经不是第一次接触,此前学习过的“沏茶”、“田忌赛马”、“打电话”等都属于这一范畴,在这几节课的学习中,对简单的优化思想方法、通过画图的方式发现事物隐含的规律等都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。本节课学生的探究活动中要用到天平,在以往学习等式的性质时,学生对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握。新课程实施以来,小组合作交流、自主探究的学习方式已为广大学生所接受,成为学生比较喜爱的主要学习方式,学生已具备一定的合作能力,在小组学习中学生能够较好地分工、合作、交流,较好地完成探究任务。

重点难点

教学重点:

发现解决这类问题的最佳策略。

教学难点:

理解并认可最佳策略的有效性。

教学过程

活动1【导入】创设情境、激发兴趣

1、看视频,谈感受。

播放美国“挑战者”号航天飞机失事的视频。看后你从中了解到什么信息?你有什么感受?

2、发现次品。

生活中经常会有一些产品与合格产品不一样。有的是外观瑕疵,有的是成分不过关,还有的是产品的质量与正常的不同……我们把这些不合格的产品称为“次品”。(板书:次品。)你身边有哪些次品?和同学交流。

今天我们要找的次品的就是外观一样,质量不同,或轻一些、重一些的次品。(板书:找)

活动2【讲授】初步感知、寻找方法

1、出示例题。

有81瓶木糖醇,其中有一瓶少了10片,可以用什么办法把它找出来呢?

数一数,掂一掂,摇一摇等方法,选择最优化的方法,用天平。

2、天平的原理。

如果两端重量相等,天平就平衡;如果不相等,重的一端下沉,轻的一端上扬。

3、华罗庚的数学思想。

让学生自由猜测称的次数。

师:同学们猜的结果不一样,可能是数量太大了。数学中有种方法叫做“化繁为简”,这正和华罗庚思想不谋而合,让我们从数量较小的来研究吧!

活动3【活动】自主探究、方法多样

1.研究2瓶

师:如果利用天平来测量,至少需要几次可以找出次品呢?板书做好记录:2次(1,1)

2.讨论3瓶的问题

如果利用天平来测量,至少要称多少次才能保证找出来呢?生叙述称球的过程。板书记录:3(1,1,1)

注重天平一共有3个空间可以利用,这样节省次数。 生将探究结果填入导学案中。

3.研究4-8瓶的问题

如果利用天平来测量,至少要称2次才能保证找到次品的可以是几瓶?

学生以小组为单位,运用手中的小圆片动手操作,并记录在导学案中。

课件出示小组活动要求。

(1)把待测物品分成了几份?每份几个?

(2)如果天平平衡,次品在哪里?如果天平不平衡,次品又在哪里?

4.重点汇报8瓶的设计方案。

(1)师引导学生:比较3、4种分法,并展开讨论:想想为什么方法3的次数是最少的?你觉得它会和什么有关系呢?

(2)师小结:所以我们在找物品的次品时,把待测的物品平均分成3份是最好的。板书:把待测物品分3份。

(3)师:比较1、2、3种分法,讨论为什么同样分3份,为什么第3种方法只用了2次哪?

(4)师小结:所以我们在找物品中的次品时,只要把物品平均分成3份,如果不能平均分成3份,就尽量平均分成3份。每份之间的差尽可能少。板书:每份之间的差尽可能少。

5.研究9瓶

学生根据总结的方法直接说出次数,小组验证。

活动4【练习】拓展提高,优化方案

1.运用掌握的方法找方法:12瓶、15瓶、24瓶需要几次能找到次品?

2.举一反三:从26瓶木糖醇中,找到一个次品,至少称几次一定能找出次品?在导学案上完成。

3.发散思维:有2187瓶矿泉水,其中2186瓶质量相同,另有1瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?

人教版五年级数学上册教案【篇3】

学习目标:

1、我能在认识长方体的基础上,掌握长方体的特征,并认识长方体的长、宽、高。

2、我能通过自主探究与合作交流,探索出长方体的具体特征,并能解决简单的实际问题。

3、我有信心学会本节所学内容,我一定能够获得成功。

重点:掌握长方体面、棱、顶点的特征和认识长方体的长、宽、高。

难点:形成长方体的概念,发展学生的空间观念。

学习过程

☆创设情景揭示课题

1、教师出示幻灯片,让同学们从长方体、长方形、正方形、三角形、球体、圆柱、圆等图形中,找出立体图形和平面图形,然后在立体图形中找出长方体。

2、孩子们,你能找出长方体吗?

☆学海探秘探究一:火眼金睛

1、长方体有()个面,每个面是()形。指一指哪些面是相同的?

2、长方体有()条棱,指一指哪些棱长度相等?

3、长方体有()个顶点。

4、你还能发现什么?

探究二:制作长方体框架图我发现

1、长方体的12条棱可以分为几组?

2、相交于同一顶点的三条棱长度相等吗?

探究三:借助“产品”我能认

1、相交于一个顶点的三条棱的长度分别叫做()、()和()。

2、我能指出长方体的长、宽、高。

☆走进知识大本营填一填

1、长方体有()个面,都是()形,特殊情况可能有一组相对的面是()形,相对的面的面积()。

2、长方体有()条棱,相对的棱长度()。

3、长方体有()顶点。

4、相交于长方体一个顶点的三条棱的长度分别叫()、()和()

辨一辨

1、长方体的6个面不可能有正方形。()

2、长方体的12条棱中长宽高各有4条。()

3、一张长方形的纸是一个长方体。()

4决定长方体的大小是长、宽、高。()

☆拓展延伸:我能自己制作一个美观的长方体玩具箱。

☆谈收获、写反思(梳理成数学日记)

通过这节课的学习,你有哪些收获?还有哪些方面需要进一步的努力?

人教版五年级数学上册教案【篇4】

教学内容

质数和合数

教材第14页的内容及练习四第1~3题。

教学目标

1.理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按因数的个数进行分类。

2.通过自主探究、合作交流的方法,理解质数和合数的意义,经历概念的形成过程。

3.培养学生自主探索、独立思考、合作交流的能力,充分展示数学的魅力。

重点难点

重点:初步学会准确判断一个数是质数还是合数。

难点:区分奇数、质数、偶数、合数。

教具学具

投影仪。

教学过程

一、创设情境,激趣导入

师:“六一”快到了,老师给大家送来了礼物!(出示百宝箱)大家想要吗?可是这上面有锁,而且是一个密码锁,打不开,怎么办?

师:密码是一个三位数,它既是一个偶数,又是5的倍数;最高位上的数是9的最大因数;十位上的数是最小的质数。你能打开密码锁吗?

学生质疑:什么是质数。教师引入本节课内容,板书:质数和合数。

二、探究体验,经历过程

1.认识质数与合数。

师:找因数--找出1到20的各个数的因数,看一看它们的因数的个数有什么特点?

学生分组进行,找出之后进行分类。

生:老师,我发现这些数的因数有的只有1个,有的有2个,有的有3个,还有的有4个或更多。

师:很好,我们可以把它们分类,大家把分类结果填在表中。

投影展示学生的分类结果。

【设计意图:在学生独立思考的基础上,找出1~20的因数后总结出特点,为下文概念的出示做准备,使学生亲身经历概念的形成过程,印象深刻】

师:一个数,如果只有1和它本身两个因数,这样的数叫做质数。如2、3、5、7都是质数。一个数,除了1和它本身还有别的因数,这样的数叫做合数。如4、6、15、49都是合数。1既不是质数也不是合数。

师:再举出几个质数和合数的例子,举得完吗?说明了什么?(质数和合数都有无数个)

想一想:最小的质数(合数)是几?最大的呢?

师:所以按照因数个数的多少,自然数又可以分为哪几类呢?

课件出示:可以把非0自然数分为质数和合数以及1,共三类。

2.制作质数表。

投影出示例1。

师:怎样找出100以内的质数呢?

生1:可以把每个数都验证一下,看哪些是质数。

生2:先把2的倍数划去,但2除外,划掉的这些数都不是质数。然后划掉3的倍数,但3不划掉……

【设计意图:通过教师的引导,学生自主建构知识,完成100以内的质数表,使学生形成一个知识网络,进一步培养了学生的数感】

三、课末总结,梳理提升

这节课我们学习了质数和合数的概念,知道了1既不是质数也不是合数。在利用所学知识进行判断时,我们要抓住质数与合数的本质特点,从因数的个数入手进行判断。在对整数进行分类时,要明确分类标准,不能把质数和合数与奇数和偶数混淆。

板书设计

教学反思

1.学生是数学学习的主人,是数学课堂上主动求知、主动探索的主体。教师是数学学习的组织者、引导者和合作者。课堂上,我尽一切所能为学生创设可观察、可探索、可发现的问题情境,让学生以科学探究的方法学习数学,促进每一位学生的发展。

2.学生是知识建构过程的主体。自主探究要让学生根据自己的生活经验或已有的知识背景去探索知识,从某种意义上说,自主探究的目的不单纯在于数学知识的掌握,而在于数学方法的掌握和情感体验的获得,通过自己探索获得“再创造”的体验。

人教版五年级数学上册教案【篇5】

教学目标

1.理解众数的含义,学会求一组数据的众数,理解众数在统计学上的意义。

2.根据数据的具体情况,选择适当的统计量表示数据的不同特征。

3.进一步提高学生的统计技能,增强学生的统计意识。

教学重难点

教学重点:认识众数,理解众数的意义及作用。

教学难点:众数和中位数平均数的相互区别,在具体情境中如何选择恰当的统计量表示一组数据的一般水平。

教学过程

(一)复习旧知

1、回忆平均数及中位数的求法,指生回答。

2、求下列这组数据的平均数和中位数。生独立完成后课件出示。

(二)完成例1

1.出示例题:

五(2)班要选10名同学组队参加集体舞比赛.下面是20名候选队员的身高情况.(单位:米)

1.32 1.33 1.44 1.45 1.46 1.46 1.47 1.47 1.48 1.48 1.49 1.50 1.51 1.52 1.52 1.52 1.52 1.52 1.52 1.52

师:提出集体舞的要求:身高接近,跳出的舞才更整齐。你认为参赛队员的身高是多少比较合适?

2.学生小组合作选择10名队员。

3.根据学生汇报,师课件随机演示选择结果。

平均数= (1.32+1.33+1.44+1.45+1.46+1.46+1.47+1.47

+1.48+1.48+1.49+1.50+1.51+1.52+1.52+1.52

+1.52+1.52+1.52+1.52)÷20

=29.5÷20

=1.475

中位数=(1.48+1.49)÷2

=2.97÷2

=1.485

接近1.485m的同学人数太少,不适合大多数同学的

身高。最高的与最矮的相差6cm。

这组数据的中位数是1.485,身高接近1.485m的比较合适。

身高是1.52m的人最多,1.52m左右的比较合适。最高的与最矮的相差3cm。

1 . 52出现的次数最多,最能应这组同学的身高情况.

4.小结:以众数1.52为标准选择队员身高会比较均匀。

师:(小结)集体舞一般要求队员身高差不多,这组数据中1.52出现的次数最多,所以1.52是这组数据的众数。所以以众数1.52为标准选出来的队员身高会很均称,组成的舞蹈队形也会很整齐很美观!

5.师生共同归纳众数概念。

师揭示众数的概念

一组数据中出现次数最多的数据,是这组数据的众数。众数能够反映一组数据的集中情况。

6、做一做,

7、小练习:

学校举办英语百词听写竞赛,五(1)班和五(2)班参赛选手的成绩如下:

求这次英语百词听写竞赛中学生得分的众数.

三个数据存在的数量和意义:

比较三个统计量:

(三)学习众数的特征

师出示练习题:

1、五(1)班21名男生1分钟仰卧起坐成绩如下(单位:次):

19 23 26 29 28 32 34 35 41 33 31

25 27 31 36 37 24 31 29 26 30

(1)这组数据的中位数和众数各是多少?

(2)如果成绩在31~37为良好,有多少人的成绩在良好及良好以上?

2、一个射击队要从两名运动员中选拔一名参加比赛。在选拔赛上两人各打了10发子弹,成绩如下:

甲:9.5 10 9.3 9.5 9.6 9.5 9.4 9.5 9.2 9.5

乙:10 9 10 8.3 9.8 9.5 10 9.8 8.7 9.9

(1)甲、乙成绩的平均数、众数分别是多少?

(2)你认为谁去参加比赛更合适?为什么?

生先独立思考,再全班交流。

师:在找三组数据的众数的过程中,你发现了什么?

生:在一组数据中,众数可能不止一个,也可能没有众数。

师小结:在一组数据中,众数有一个,也有多个,甚至没有。同时众数也反应了一组数据的集中情况。

2、三个数据存在的数量和意义

(四)综合练习

你去商场买过衣服吗?你知道休闲类服装型号的“均码”是什么意思吗?均码一般是根据人的平均身高、胸围等数据确定的统一商品型号,与多数人的型号接近。所以,均码里蕴涵着平均数和众数的原理。

(五)联系情境,应用众数

销售衣服问题。

师:小明很喜欢做社会调查。他到一家服装店调查后,给我们带来了这样的一则信息:服装店销售了20件T恤,尺寸如下:(单位:cm) 42 39 38 40 41 41 42 39 40 41 41 41 41 40 41 40 41 40 40 41

师:从表格中,你发现了什么?如果你是这家服装店的经理,你会怎样进货?

生:讨论交流,发表自己想法。

师:(小结)从中可以看出,在衣服的尺码组成的一组数据中,41cm是这组数据的众数,也就是41cm衣服销售量最大。所以,可以多进一些41cm的衣服。商品的销售里面也要用到众数的知识,由此看来,生活中还真少不了众数啊!

(五)拓展延伸(“生活中的数学”)均码问题。

师:同学们去商场买过衣服吗?如果你去买过会发现,商场里很多休闲的服饰,它的型号都是均码的。我们一起来看一下。

师:课后请同学们调查和了解一下:什么是“均码”?

(六)全课小结

教师:同学们,今天我们上了这节课你收获了什么?

猜你喜欢