高中数学必修四教案6篇
作为一位无私奉献的人民教师,总不可避免地需要编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。以下是小编为大家收集的高中数学必修四教案,欢迎阅读,希望大家能够喜欢。
高中数学必修四教案篇1
教学目标:
1·进一步理解对数函数的性质,能运用对数函数的相关性质解决对数型函数的常见问题·
2·培养学生数形结合的思想,以及分析推理的能力·
教学重点:
对数函数性质的应用·
教学难点:
对数函数的性质向对数型函数的演变延伸·
教学过程:
一、问题情境
1·复习对数函数的性质·
2·回答下列问题·
(1)函数y=log2x的值域是;
(2)函数y=log2x(x≥1)的值域是;
(3)函数y=log2x(0
3·情境问题·
函数y=log2(x2+2x+2)的定义域和值域分别如何求呢?
二、学生活动
探究完成情境问题·
三、数学运用
例1求函数y=log2(x2+2x+2)的定义域和值域·
练习:
(1)已知函数y=log2x的值域是[—2,3],则x的范围是________________·
(2)函数,x(0,8]的值域是·好好文库整理 HaoHaowenkU.coM
(3)函数y=log(x2—6x+17)的值域·
(4)函数的.值域是_______________·
例2判断下列函数的奇偶性:
(1)f(x)=lg(2)f(x)=ln(—x)
例3已知loga 0·75>1,试求实数a取值范围·
例4已知函数y=loga(1—ax)(a>0,a≠1)·
(1)求函数的定义域与值域;
(2)求函数的单调区间·
练习:
1·下列函数(1)y=x—1;(2)y=log2(x—1);(3)y=;(4)y=lnx,其中值域为R的有(请写出所有正确结论的序号)·
2·函数y=lg(—1)的图象关于对称·
3·已知函数(a>0,a≠1)的图象关于原点对称,那么实数m= ·
4·求函数,其中x [,9]的值域·
四、要点归纳与方法小结
(1)借助于对数函数的性质研究对数型函数的定义域与值域;
(2)换元法;
(3)能画出较复杂函数的图象,根据图象研究函数的性质(数形结合)·
五、作业
课本P70~71—4,5,10,11·
高中数学必修四教案篇2
教学准备
教学目标
掌握三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型·
教学重难点
·利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型·
教学过程
一、练习讲解:《习案》作业十三的第3、4题
3、一根为Lcm的线,一端固定,另一端悬挂一个小球,组成一个单摆,小球摆动时,离开平衡位置的位移s(单位:cm)与时间t(单位:s)的函数关系是
(1)求小球摆动的周期和频率;(2)已知g=24500px/s2,要使小球摆动的周期恰好是1秒,线的长度l应当是多少?
(1)选用一个函数来近似描述这个港口的水深与时间的函数关系,并给出整点时的`水深的近似数值
(精确到0·001)·
(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1·5米的安全间隙(船底与洋底的距离),该船何时能进入港口?在港口能呆多久?
(3)若某船的吃水深度为4米,安全间隙为1·5米,该船在2:00开始卸货,吃水深度以每小时0·3
米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?
本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。
练习:教材P65面3题
三、小结:1、三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型·
2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型·
四、作业《习案》作业十四及十五。
高中数学必修四教案篇3
教学准备
教学目标
1·掌握平面向量的数量积及其几何意义;
2·掌握平面向量数量积的重要性质及运算律;
3·了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;
4·掌握向量垂直的条件·
教学重难点
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用
教学工具
投影仪
教学过程
一、复习引入:
1·向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ
五,课堂小结
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
六、课后作业
P107习题2·4 A组2、7题
课后小结
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的.主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
课后习题
作业
P107习题2·4 A组2、7题
板书
高中数学必修四教案篇4
教学类型:探究研究型
设计思路:通过一系列的猜想得出德·摩根律,但是这个结论仅仅是猜想,数学是一门科学,所以需要论证它的正确性,因此本节通过剖析维恩图的四部分来验证猜想的正确性,并对德摩根律进行简单的应用,因此我们制作了本微课·
教学过程:
一、片头
(20秒以内)
内容:你好,现在让我们一起来学习《集合的运算——自己探索也能发现的'数学规律(第二讲)》。
第1张PPT
12秒以内
二、正文讲解
(4分20秒左右)
1·引入:牛顿曾说过:“没有大胆的猜测,就做不出伟大的发现。”
上节课老师和大家学习了集合的运算,得出了一个有趣的规律。课后,你举例验证了这个规律吗?
那么,这个规律是偶然的,还是一个恒等式呢?
第2张PPT
28秒以内
2·规律的`验证:
试用集合A,B的交集、并集、补集分别表示维恩图中1,2,3,4及彩色部分的集合,通过剖析维恩图来验证猜想的正确性使用
第3张PPT
2分10秒以内
3·抽象概括:通过我们的观察和验证,我们发现这个规律是一个恒等式。
而这个规律就是180年前著名的英国数学家德摩根发现的。
为了纪念他,我们将它称为德摩根律。
原来我们通过自己的探索也能发现这么伟大的数学规律。
第4张PPT
30秒以内
4·例题应用:使用例题形式,将的德摩根定律的结论加以应用,让学生更加熟悉集合的运算
第5张PPT
1分20秒以内
三、结尾
(20秒以内)
通过这在道题的解答,我们发现德摩根律为解答集合运算问题提供了更为简便的方法。
希望你在今后的学习中,勇于探索,发现更多有趣的规律。
第6张PPT
10秒以内
教学反思(自我评价)
学生在学习集合时会接触到很多的集合运算,往往学生觉得这是集合中的难点,因此本节课通过一系列的猜想,以精彩的动画展示,让学生在直观的环境下轻松的学习,提高学生学习数学的兴趣,并通过层层深入的讲解,让学生进一步加强对集合运算的理解和应用能力,效果非常好·
高中数学必修四教案篇5
教学准备
教学目标
o了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量·
o通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别·
o通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力·
教学重难点
教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量·
教学难点:平行向量、相等向量和共线向量的'区别和联系·
教学过程
(一)向量的概念:我们把既有大小又有方向的量叫向量。
(二)(教材P74面的四个图制作成幻灯片)请同学阅读课本后回答:(7个问题一次出现)
1、数量与向量有何区别?(数量没有方向而向量有方向)
2、如何表示向量?
3、有向线段和线段有何区别和联系?分别可以表示向量的什么?
4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?
5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?
6、有一组向量,它们的方向相同或相反,这组向量有什么关系?
7、如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?
这时各向量的终点之间有什么关系?
课后小结
1、描述向量的两个指标:模和方向·
2、平面向量的概念和向量的几何表示;
3、向量的模、零向量、单位向量、平行向量等概念。
高中数学必修四教案篇6
一、教学目标
掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.
二、教学重、难点
1.教学重点:通过探索得到两角差的余弦公式;
2.教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等.
三、学法与教学用具
1.学法:启发式教学
2.教学用具:多媒体
四、教学设想:
(一)导入:我们在初中时就知道?,,由此我们能否得到大家可以猜想,是不是等于呢?
根据我们在第一章所学的'知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式
(二)探讨过程:
在第一章三角函数的学习当中我们知道,在设角的终边与单位圆的交点为,等于角与单位圆交点的横坐标,也可以用角的余弦线来表示,大家思考:怎样构造角和角?(注意:要与它们的正弦线、余弦线联系起来.)
展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索与__之间的关系,由此得到,认识两角差余弦公式的结构.
思考:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?
提示:
1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?
2、怎样利用向量的数量积的概念的计算公式得到探索结果?
展示多媒体课件
比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处.
思考:再利用两角差的余弦公式得出
(三)例题讲解
例1、利用和、差角余弦公式求、的值.
解:分析:把、构造成两个特殊角的和、差.
点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:,要学会灵活运用.
例2、已知,是第三象限角,求的值.
解:因为,由此得
又因为是第三象限角,所以
所以
点评:注意角、的象限,也就是符号问题.
(四)小结:本节我们学习了两角差的余弦公式,首先要认识公式结构的特征,了解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角、的象限,也就是符号问题,学会灵活运用.